
SqlitePass Database components - Major Changes

10/09/2010 – Version 0.55
• Many changes again with this new version and a lot of bugfixes.
• New error dialog with better error handling to let you log and browse the errors

history (not finished yet...),
• TSqlitePassDataset has Params support and a new designtime params editor.

Params give you access to the queries or sql statements parameters. They are
very similar to classic TParams. You can easily retrieve and automatically bind your
params to the appropriate field datatype if you suffixe your params names (in the
sql statement) like this : MyParamName + As + Datatype.

•
For example,

"select * from MyQuerie where MyFieldDate = :MyParam1AsDate
and MyFieldCode >= :MyParam2AsInteger;"

Supported datatype are AsWidestring, AsString, AsSmallint, AsLargeint, AsInteger,
AsWord, AsFloat, AsBoolean, AsCurrency, AsBcd, AsDatetime, AsDate, AsTime,
AsVarbytes, AsBytes, AsAutoinc, AsFmtmemo, AsMemo, AsBlob, AsGraphic,
AsTypedbinary, AsFixedchar.

Note : Params values are always filled in as litteral text. Date, DateTime, Time...etc
values must follow the corresponding Database.DatatypeOptions.DateFormat,
DateTimeFormat, TimeFormat template.

Here is a small example :

 DatasetDetail.Close;
 DatasetDetail.SQL.Text := 'SELECT * FROM [DateTime] where Date =:ParamDateAsDate;';
 DatasetDetail.Params.ParamByName('ParamDateAsDate').Value := '2010/12/10';
 DatasetDetail.Open;

You can also define a master/detail relation with parameters. At design time, once
your datasetname is selected, set the MasterSource Property and then set the
params property to show up the parameters dialog. The Value dropdown list allows
you to choose the master field for each param you want to link with.

• Better Unicode ↔ Ansi conversions
• TSqlitePassDataset should handle more complexes queries (no thoroughly tested

yet)
• and many more...

16/05/2010 – Version 0.51
• The database.options were updated to handle more pragma settings, with a new

Property : ApplyMode to control how pragma applies. (see help file).
• Note : I had to change some const TSqlitePassAutoVacuumType = (avNone,

avFull, avIncremental)...etc and you could have some problems reopening existing
dfm or lfm files. In this case, open the dfm/lfm as text and remove all the lines
related to the database.options, for example Options.AutoVacuum = ….

• Bugfix in Filter Text that raised error when dataset was retrevied from *,dfm and
already opened.

• Bugfix : when a fieldname is quoted with singlequote, it is parsed as plain text
string, not indentifier. This is the normal behavior for sqlite.
I had to remove qsSingleQuote from TsqlitePassQuoteStyle.
TsqlitePassQuoteStyle is now (qsDoubleQuote, qsBracket, qsGraveQuote,
qsNone); This fix is also related to the textfield size errors that could raise in 0.50
version.

• Default library file changed to sqlitepass3.dll to sqlite3.dll or libsqlite3.so
• Log error dialog can be inspected directly from IDE now. (Right click on

TsqlitePassDatabase Component). It could help catch bug → Sometimes,
database doesn't open, but without raising exception.

• Help file partially updated.
• Some other bugfixes and minor improvements applied to :

• TSqlitePassFilters and TSqlitePassActiveFilters
• CreateDatabase dialog
• TSqlitePassCustomFieldDefs and associated dialog
• FFieldTypesTranslationRules and associated dialog
• Null fields
• Date, Time, DateTime, TimeStamp fields should return the correct data

with kexi, Sqlite Administrator, Sqlite Expert, SqliteToolbox databases
• Record delete operation occuring on an inserted record with auto primary

key is allowed now...etc.

10/03/2010 – Version 0.50
This version was focused on data sorting optimizations, the introduction of
InMemory indexes, fast LookupFields, reworks on field filters, locate and lookup
functions... :

• The sort procedure was changed to gain speed. It is a hybrid of quicksort/insertion
sort implementation that perfoms quite well. This procedure is also used to build
the in-memory indexes.

• Sort can be used with calculated and lookupFields when dataset
CalcDisplayedRecordsOnly or LookUpDisplayedRecordsOnly are set to true
(default)

• In-memory indexes provide fast binary search. They are used in locate, lookup,
lookupfields...etc... operations. The In-memory indexes can be set at designtime
with a new dialog (TsqlitePassDatabase.Indexed and
TsqlitePassDatabase.Indexes properties)

• Locate, lookup and lookupFields implementation have been completely rewritten.
These functions use extensively the TsqlitePassFieldFilters, TsqlitePassFieldFilter
and TsqlitePassFieldFilterExp classes.

• Support for BCD fields (up to 4 digits) is implemented. BCD fields are stored as
int64 in the database.

• Bug correction with unicode support that could prevent from opening database
when database path was too long or included unwanted chars,

• Internal recordset buffer implementation was changed again to provide more
compact memory use and faster records management.

• Modifications in filters, locate dialogs,
• New Lookup dialog in SqliteToolbox demo program.
• Experimental Sqlite User Defined Functions support
• Help file partially updated.
• And many other bugfixes and improvements....

08/10/2009 – Version 0.45
The major changes are the components compatibilty with Delphi2009, Unicode
support and better performances when loading and writing data. Here is a list of
the most important changes :

• Rework on TSqlitePassDatabase.Open (function
SqlitePassDatabase.CheckCanOpen). When SmartOpen is set to True :
Two databases with the same filename but located in two different directories could
lead to open the wrong database. Now a message will warn you.

• Rework on TSqlitePassDatabaseDataTypeOptions.LoadFromDatabase to stop
raising uncessary exception when a database is opened for the first time

• Rework on "Internal" record Filters
Filter functions are now defined as "inline" to speed up comparison
ftString Fields were not correctly filetered. Now the text filter uses AnsiStrComp,

AnsiStrIComp, AnsiStrLComp and AnsiStrPos to perform comparisons.

• Like and NotLike were removed from internal filter syntax. Use '=' or '<>' instead
with '*' and '%' Wildcard chars if needed

• TSqlitePassRecordset was modified to speed up loading data from SQL statements
and to correct memory use that could lead to critical errors with previous version.
The loading time is now about 10 times faster then version 0.42 and large tables or
queries are now supported.

• Procedure TSqlitePassSQLTokenizer.Clean was rewritten

• TSqlitePassDataset.Refresh is implemented and works correctly now.

• Database encoding is now set correctly when a new database is created (UTF8
,UTF16 , UTF16le, UTF16be)

•
• Database pagesize is now set correctly when a new database is created

(512..32768)
•
• Unicode UTF8 and UTF16 support :

The components should be 'unicode friendly' with UTF8 and UTF16 support
for SQL statements, Table names, field names, field Data...etc.

The property UnicodeEncoding sets how text, strings or memo are
retrieved from the database, encoded, displayed and eventually put back to
the database.

This property is independant of the Database.Options.Encoding property
which is readonly :
you can read or write strings as UTF16 from an UTF8 Database and vice-
versa. (To be tested...)

UnicodeEncoding can take one of the following value (ueAuto, ueUTF8,
ueUTF16, ueRawText).
UnicodeEncoding doesn't really change the way text is encoded. It simply
overwrite the field definition for a given table column, changing the original
ftString to ftWideString, ftMemo to ftWideMemo or vice-versa.

Whatever delphi or fpc version you use (unless you set UnicodeEncoding to
ueRawText), SqlitePassDatabase uses the following rules :

• A ftString field is ALWAYS encoded as UTF8,
• A ftMemo field is ALWAYS encoded as UTF8,
• A ftWideString field is ALWAYS encoded as UTF16,
• A ftWideMemo field is ALWAYS encoded as UTF16.)

The fields conversions applies only for dynamically created fields (not the
ones already set at design time).
If a custom conversion rule is already set for a given table field, it will always
have the priority for the final field definition. See also
Database.DatatypeOptions.CustomFieldDefs).

The UnicodeEncoding default value is ueAuto.

• ueAuto: no change is done to the fieldDefs.
• ueUtf8: ftWideString fields are converted to ftString,

ftWideMemo are converted to ftMemo,
• ueUtf16: ftString fields are converted to ftWideString,

ftMemo are converted to ftWideMemo,
• ueRawText: no change is done to the fieldDefs, no encoding

is done when retrieving data.)

Note :
Delphi, prior Delphi 2009, doesn't handle Unicode in classic vcl. In order to
write Unicode applications you have to use third part libraries like tnt unicode
controls or utf8-vcl (freeware). The delphi 4 demo program uses utf8-vcl
which is not very reliable (memory leaks and pointers crashes) but good
enougth to test the database components.

Delphi 2009 offers native Unicode support as UTF16.
Lazarus-fpc offers native Unicode support as UTF8 : it is a nice alternative to
Delphi prior Delphi 2009 to build unicode applications.

• Many other changes are included in this version

10/05/2009 – Version 0.42

• Dataset.Filters were entirely rewritten to enable filtering on calculated fields with the
addition of a new filter form. It is the most important addition to this version.

• Functions added to TsqlitePassDatabaseDataTypeOptions used to get a text
representation of the Date Value, using the DateFormat property

• + function DateTimeToStr(Value: TDateTime): String;
• + function DateToStr(Value: TDateTime): String;
• + function TimeToStr(Value: TDateTime): String;
• A new component is now registered in IDE : TsqliteDBActionList. Drop this

component on your form and set the datasource property. DoubleClic to add some
of the preset available SqlitePassActions as you do with clasic ActionList editor.
Link these DbActions to buttons or menus and you will be able to easely sort, filter,
locate data etc... with dedicated forms. You can check this in the demo program as
it uses this new component.

• TsqliteRecordset seems to be quite reliable now with many bugs fixes and some
functions added. Deleted records are now recycled and Blobs get back to there
prior state when editing is canceled.

• A lot of work was also done on TsqlitePassSQLTokenizer
• Bugfix : Inserting a record after a delete was buggy. Special thanks to Parcel who

send this bug report and many bug fixes on forum.
• Demo program update.
• Help partially updated
• and many other minor changes...

10/01/2009 – Version 0.41

• This version introduces changes in the TsqlitePassSelectStmt object , with a new
SQL Tokenizer (TsqlitePassSQLTokenizer - still in progress) and a dedicated SQL
sections splitter (TsqlitePassSQLSections). Additional modifications of code when
posting data (Insert-Update-Delete) has be done too.

• Added a specific TSqlitePassSQLStmtDef object to store SQLStmts directly in the
database (TSqlitePassSQLStmtDefs) . The TSqlitePassSQLStmt object is now
used when the statement need to be modified or send to the database engine.

• Better support for AutoInc Fields and PrimaryKey Fields.
• SQL functions like sum() are now supported (to be improved),
• Rework has been done on attached databases. All the database parts collections

have an « Assign » procedure.
• Bugfix : in Date/DateTime conversion from databases created with SQLiteExpert.

Thanks to Dsutuno for reporting this problem.
• Bugfix : in Function TSqlitePassRecordset.GetRowId(RecordIndex: Integer;

TableNo: Word): Int64; that could return a incorrect RowId and update the wrong
data row...

• Added Int64 support in the TSqlitePassDataset.sort procedure.
• Demo program update.

08/12/2008 – Version 0.40

• This version introduces too many changes to notice all of them.
• The TSqlitePassRecordset object was completely re-written and many parts of the

dataset component had to be modified. These changes should lead to faster data
reading and writing.

• Null values are handled
• The TSqlitePassTranslator object was completely re-written too, in order to add

better support for date/time/datetime/boolean fields
• You will find a new documentation (no finished...) using PasDoc
• Bugfix : Procedure TsqlitePassDataset.FindFirst : was always returning True even

when no record was found. (Thanks to John MORRIS for reporting this problem)
• Sorting was completely re-written and uses as default choice an internal QuickSort

algorithm that should handle date/time, Memo and other datatypes correctly,
• and many others...

Many thanks to all of you who spend time to try these components and their bugs...

17/06/2008 – Version 0.35

Here are some of the main changes for this version :

• Bugfix : Binding of ftAutoinc fileds was not correct.
• Bugfix : Procedure TsqlitePassDataset.Locate : was always returning True even

when no record was found.
• Added new collection TsqlitePassSQLStmts to store SQL statements directly into

the database,
• Rework on TSQlitePassDataset.Post to improve post errors management,
• Demo program improvements :

• You can now create new databases.
• Tables can also be created, modified (partially), deleted, renamed,

reindexed...etc
• Rework on Database Options Dialogs (CustomfieldDefs and Mapping

Rules)
• Added several PopupMenus.
• SQL tabsheet modified...etc
• New installer for windows.

• New procedure CopyTable to duplicate a table structure with,or without its data
• And others small changes...

23/03/2008 – Version 0.34

Here are some of the main changes for this version :

• Dataset.Locate implementation, with
New methods :

• Locate
• LocateFirst
• LocatePrior
• LocateNext
• LocateLast

New properties
• LocateRecordCount
• LocateMoveState
• LocateSmartRefresh

• Dataset.Lookup implementation, with new methods :
• Lookup
• LookupFirst

• LookupPrior
• LookupNext
• LookupLast

New property
• LookupSmartRefresh (Not implemented yet)

• Lookup fields are now supported.
• New TsqlitePassDatabaseError object to log and retrieve errors.

...
procedure GetLastError(var ErrorCode: Integer;var Msg: String;
var Time: TDateTime);
procedure SaveToFile(FileName: String);
property ErrorCount: Integer Read FErrorCount;
property ErrorList: TStringList Read FErrorStringList;

TsqlitePassDatabaseOptions.LogErrors property

• Many bugs corrections and code changes,
• Demo program has been updated to help you in testing and using the new

features.

29/02/2008 – Version 0.33

Here are some of the main changes for this version :

• Rework on filtering dataset data. I forgot to post the changes in version 0.32...It
should work correctly now,

• Dataset FindFirst, FindLast, FindNext, FindPrior are implementation for filtered
datasets

• Dataset Fields can now be defined at designtime with the IDE fields editor
• Rework on Dataset.InternalOpen, InternalInitFieldDefs and new utility function

« CheckCanOpen ».
• New Filter editor at designtime
• Bugfix : Procedure TsqlitePassDatabase.SaveToDatabase and procedure

TSqlitePassTableDefs.Refresh;
Thanks to Leander007 for his contribution (details can be found on sqlitepass
forum)

• New TsqlitePassDatabase.CreateDatabase procedure
Thanks to chukkan for his contribution (details can be found on sqlitepass forum)

• New installation packages for Delphi 6 and 7
• And many other changes...

03/02/2008 – Version 0.32

This is the first version running under linux (ubuntu). It should compile quite correctly. Let me
know if you have problems.

Here are some of the main changes for this version :

• Rework on filtering dataset data. It should work correctly now,
• Rework on Blob datafield to fix memory leaks, speed up blob display and save

memory. (I still have problem under lazarus to display images using TdbImage
component)

• TsqlitePassDatabase should now be able to open/read/write to databases created
with kexi, Sqlite Expert, Sqlite Admin or Sqlite4Fpc. It should also be able to open
any other sqlite databases if you define the right parameters in the
Database.DataTypeOptions properties :

 Property BooleanExtension
 Property CustomFieldDefs
 Property DefaultFieldType
 Property DetectionMode
 Property DateSeparator
 Property DateStorage;
 Property LoadOptions
 Property LongTimeFormat
 Property ShortDateFormat
 Property SaveOptions
 Property TimeSeparator
 Property TranslationRules

• New property Database.Options : QuoteStyle, used to quote fieldnames containing
spaces,

• Updated help file,
• And many other small improvements or corrections.

04/01/2008 – Version 0.31

This version introduces the basic for futur locate / lookup functions and some bugfixes. I still
had some memory leaks to fix from the previous versions. I used Fastmm from
http://fastmm.sourceforge.net to test memory allocation/deallocation and to catch pointer
missuse while using Delphi 4.
Many thanks to Pierre le Riche for this tool.

Here are some of the main changes for this version :

• Bugfix : Procedure TsqlitePassDataset.InternalOpen;
Memory leak fix. FSQLSelectStmt was created twice (in TsqlitePassDataset.Create
and TsqlitePassDataset.InternalOpen and fred just once...)

• Improved support for attached databases : Attached tables return correct record
data when several attached tables have the same name.

• TsqlitePassDatabase.refreshDefinitions and underlying translator implementations
was rewritten to improve attached database support.

• Added basic Triggers support.
• And many small improvements or corrections

12/09/2007 – Version 0.30

This version introduces Master/Detail filters and a lot of bugfixes. Many memory leaks had to
be fixed from the previous versions. I used the fpc heaptrc.pas unit to test memory
allocation/deallocation. This unit is a wonderful tool to catch memory errors. (In lazarus IDE,
compiler options, Linker, check « use heaptrc ».

Here are some of the main changes for this version :

• Bugfix : Function TSqlitePassDatabase.GetFCollatingOrder:String; Wasn't
returning any result...It now returns a default empty string as a result and doesn't
raise a runtime error anymore.

• Bugfix : TsqlitePassDataset.DatasetName was set to '' (empty) when SQL
property was set, even if the SQL text remained the same as before.

• Bugfix : TsqlitePassDataset.Delete didn't call the right SQL statement to delete
record. Should be fixed now.

• Bugfix : Sqlite library was always unloaded when engine destroyed even if more
than one engine was using it. It now keeps track of the different engines running
(counter) and the library is released only when the last engine is destroyed.

• Bugfixes : Many objects constructors/destructors have been rewritten to avoid
runtime errors,

• New procedure TsqlitePassMasterDataLink.LayoutChanged to synchronise internal
Recordset fields order with Dataset fields,

• New properties : MasterSource, MasterFields, MasterAutoActivate,...
• New Event: OnFilterRecord to enable custom filter (Blob fields are available when

filtering),
• New property editor to link Master/Detail fields,
• procedure TsqlitePassDataset.InternalRefresh was rewritten to speed up filetring,
• TsqlitePassSelectStmt was partially rewritten to give a more reliable schema

structure,
• Help file have been partially updated
• ...etc

http://fastmm.sourceforge.net/

19/07/2007 – Version 0.29

• Bugfix for Procedure TsqlitePassDatabase.SetFSQLStmt ,
TsqlitePassDataset.SetFDatasetType, TsqlitePassDataset.SetFDatasetName :
modification to avoid problems when changing sql property at designtime. Thanks to
Wilhelm Reeg for reporting this problem.

• Bugfixes in the indexDefs.Refresh property (indexdefs was not retreived)
• Improvement in the demo program (It displays info on FieldDefs now...)
• Added support for filtering and improvemnt in sorting editor.
• Delphi version of packages will compile directly to c:\windows\system32 now.

Change the outpout directory in package options if your configuration is different.

28/06/2007 – Version 0.28

• It uses now the sqlitepass3.dll as the default sqlite library (this library exports the
following functions to get schema information from an sql statement : These
functions are :

• sqlite3_column_database_name
• sqlite3_column_database_name16
• sqlite3_column_table_name
• sqlite3_column_table_name16
• sqlite3_column_origin_name
• sqlite3_column_origin_name16
• sqlite3_table_column_metadata

• Calculated fields are implemented.
• Bugfix for Procedure TsqlitePassDatabase.SetFSQLStmt and

TsqlitePassDataset.SetFDatasetType : modification to handle calculated fields
• Bugfix for Procedure TsqlitePassDatabase.Loaded : « inherited loaded ». It is

correct now.
• SqlitePassDbo contains only an interface section now. All implementations have

been splitted and move to *.inc files. This offers easier coding (objects can use each
other without writting an interface definition or caring about unit circular references...)

• TsqlitePassFieldDefs is used now to retrieve fielddefs information from database.
This is used by TSqlitePassSelectStmt to extract a shema of the fields used in the
dataset select statement. This information is used to be able to write from a query
that use several tables. Yes, you can update queries now !

• Many other changes have been made to units structure and source code to keep
track of every modifications. The basic overall component structure should be almost
done (even if implementation is sometime missing)

• The documentation was not updated. Since the code is changing to quickly, I will
write it one the components are enough tested...

28/04/2007 – Version 0.27

• TsqlitePassDatasets.FindDataset is implemented.
• TSqlitePassDatasets.Close is implemented.
• TSqlitePassRecordsetCache was heavely modified again. Many bugs fixed and

speed improvements. The change made in version 0.26 « When adding a new
record, TsqlitePassRecordsetCache doesn't use a special record anymore but
create a new record in the global records list. This record is removed by the dataset
if finally the user cancels the insert/append operation » was deleted. I use a new
record again (FnewRecord) because the previous changes was too confusing with
the count property and when navigating in the recordset.

• InitFieldDefs is moved to TSqlitePassTranslator to enable better fieldtype detection
with Kexi.

• Bugfix Procedure TsqlitePassDatabase.SetFActive : Factive was not set at
all...This is now correctly set.

• Bugfix for Procedure TsqlitePassDataset.SetFDatasetName : Dataset Name
was not correctly retrieved from *.lfm or *.dfm when set at designtime and no
data was displayed in application at runtime.

• Bugfix for Procedure TsqlitePassDataset.GetRecord : No data was retrieve when
DatasetState was dsInactive

• Added support for int64 (ftLargeInt) field type in TsqlitePassTranslator.
• FieldDefs has been completed for Kexi Databases, especially for fields constraints.

The TsqlitePassBitArray was created to take care of this (SqlitePassParser Unit).
• Bugfix when adding a record, recordcount was always updated. It is now updated

only if the new record is really posted.
• When inserting or appending a new record, Procedure

TsqlitePassDataset.SetBookmarkFlag and TsqlitePassDataset.SetBookmarkData
store the current position now. This enables to go back to the last selected record if
inserting is canceled.

• And more...

17/03/2007 – Version 0.26

• Code cleanup has been done, especially in SqlitPassDbo unit. Lots of « TODO »
lists are left...

• Blobs support is now implemented and seems to work quite properly in Delphi but
Lazarus doesn't display picture in TdbImage component...

• Packages and components versions have been changed to provide a better version
installation check in IDE-object inspector,

• New documentation file. Basic information on packages contents and installation for
now...

• Heavy changes and cleanup in TsqlitePassRecordsetCache :
• Old fields values are saved now and can be restored if needed,
• When adding a new record, TsqlitePassRecordsetCache doesn't use a

special record anymore but create a new record in the global records list.
This record is removed by the dataset if finally the user cancels the
insert/append operation. Procedure TsqlitePassDataset.InternalCancel is
implemented.

• GetRecords methods has been completely rewritten to add a
LowerRecordLimit and an UpperRecordLimit filter. More changes are
planed, especially in fields type detection.

• The sqlite library file to be used can now be selected directly in object inspector. If
no file is selected, the default one will be used,

• SqlitePassDataset uses only a TMemRecord pointer value when sending or
retrieving information to/from TDataset. This should really speed up operations since
no real data is moved in memory,

• New indexes designtime editor,
• New Sqlite library designtime editor,
• Unit SqlitePassApi_v3 : The procedure 'LoadFunctions' had to be rewritten to

enable dynamic loading of the library (.dll or .so) by the
TSqlitePassDatabase.SQLiteLibrary property;

• And more...

20/01/2007 – Version 0.25

• Procedure TSqlitePassDataset.SetFieldData(Field: TField; Buffer: Pointer); virtual;
abstract;
The DataEvent is used to set TDataset.SetModified to True.
Then TDataset.CheckBrowseMode will be able to Post the record if necessary when
scrolling the dataset

if not (State in [dsInternalCalc, dsCalcFields, dsFilter, dsNewValue])
 then DataEvent(deFieldChange, Longint(Field));

• The procedure TSqlitePassIndex.SetFIndexName(Value: String) checks the index
name to be set (same rules as a pascal identifier) to avoid error when renaming or
deleting index.

if IsValidIdent(Value)

• Added SQLPassParser unit to enable easier data sorting, filtering in
TSqlitePassDataset

• New sortby designtime editor
• Many bug fixes and changes.

 18/12/2006 – Version 0.24

• Added TsqlitePassDatabasesAttached object to maintain a list of external
databases attached to the current database.

• Attached Tables support
• Attached Queries support

• Rework on date/time support for lazarus since Tdataset.GetFieldData
implementation has changed with FPC 2.0.4 / Lazarus 0.9.18

 17/10/2006 – Version 0.23
• Added TSqlitePassTranslator.GetIndexDefs;
• IndexDefs[i].Sql corrected to FDatabase.IndexDefs[i].Sql
• Added new procedure CreateIndex(Index: TSqlitePassDatasetIndex); overload;
• Added basic TSqlitePassViews implementation and Database.Views property
• Changes made in TSqliteDataset.internalOpen to handle views.

 24.09.2006 – Version 0.22
• TsqlitePassTranslator_Kexi.GetDatabaseObjects : the SQL statement is correct

now.
• TsqlitePassDataset.InternalInitFieldDefs uses now the new

TSqlitePassRecordsetCache.HasPrimaryKey property to return the correct fieldDefs.
• TSqliteIndexDefs - TSqliteIndex - TSqliteIndexColumns – TsqliteIndexColumn

Partially implemented
• Added TSqlitePassIndexColumn.Position property

 03.09.2006 – Version 0.21
• Improved date/time support for lazarus, some bugs fixed with queries, fielddefs...
• Added partial support for Kexi system tables in TsqlitePassTranslator_Kexi and

more...

20.07.2006 – Version 0.20 - First public release. For testing and debuging...

Known Bugs

This is a list of known bugs in the last package version. Feel free to report new bugs, send
bugs fixes to SqlitePass Forum at http://source.online.free.fr/

Lazarus
• TdbImage component doesn't display any picture in Demo program...
• Locate raises SIGV error on cancel

Delphi
• No heavy bugs found – Please report...

TODO List

This is a list of TO DO for the next releases :

General
• Improve write autorisation on queries
• Rework on Triggers,
• Add data Importing, Exporting
• Add table modification without loosing data
• Add possibility of copying or moving Tables data or structure, Queries...etc between

databases or attached databases,
• Add better support for cloned fields in SQLStmt,
• Add better support for autoinc and primarykey fields in SQLStmt,
• Continu the help file,
• Add profiler to test library speed,
• etc...

Lazarus
• Fix TdbImage problem

Delphi

