
User's Guide for
SqlitePass Database Components

Version 0.30

Last Revision
2007-09-12

SqlitePass components provides a easy and fast access to sqlite databases

At the moment, it partially supports reading
from / writing to databases created with : SQLite Administrator

Database manager for
Windows

This project is open source, released under LGPL license. Libraries and components are free and
currently tested with Delphi 4 - Lazarus 0.9.22 – FPC 2.0.4. Let me know in you want to use those
components with other Delphi versions.

http://www.orbmu2k.de/
http://source.online.free.fr/ProjectDescription.html#License
http://www.koffice.org/kexi
http://www.orbmu2k.de/

User's Guide Summary
Packages Description.. 3
Packages Installation .. 5
Quick Start.. 8
The TSqlitePassDatabase component.. 9
The TSqlitePassDataset component... 12
Roadmap for version 0.31.. 14

Packages Description

Content of SQLitePass_x.xx Directory

• Demo program in /Demo

/Databases Databases samples in Kexi or SqliteAdministrator format.

/Delphi4 Demo Project files for Delphi 4

/Lazarus Demo Project files for Lazarus

/Sources

Source files for the demo project.
• *.pas files are shared by Delphi and Lazarus projects
• *.dfm files are used by Delphi
• *.lfm files are used by Lazarus

• Documentation in /Documentation

• /UserGuide.odt or
UserGuide..pdf The file you are reading...

• /Changes.odt or Changes.pdf Latest changes – Versions history

• Components Packages in /Packages

• Packages/Delphi4

D4_SqlitePassDbo_Runtime.dpk Runtime package. Shoul be compiled first (see
the installation section)

D4_SqlitePassDbo_Designtime.dpk

Designtime package, used to :
• Register and display components in

Delphi IDE,
• Register property editors in Delphi IDE.

• Packages/Lazarus

Laz_SqlitePassDbo_Runtime.dpk Runtime package. Shoul be compiled first (see
the installation section)

Laz_SqlitePassDbo_Designtime.dpk

Designtime package, used to :
• Register and display components in

Lazarus IDE,
• Register property editors in Lazarus

IDE.

• Components sources files in /Sources

• /Sources : Components source files. Sources files
are shared by Delphi and Lazarus

Packages/Lazarus

SqlitePassApi_v3.pas
Loads the external Sqlite engine library (sqlite.dll or
sqlite.so) and registers the sqlite functions to be used by the
SqlitePass components.

SqlitePassDbo.inc Include file used to define compiler settings...etc

SqlitePassDbo.pas

SqlitePass Database Objects interfaces definitions.

Implementations are stored in
SlitePassDatabase.inc, SqlitePassDatabaseParts.inc,
SqlitePassDataset..inc, SqlitePassRecordset.inc,
SqlitePassSelectStmt.inc.

SqlitePassDbo.lrs Lazarus ressource file used to dipslay components icons in
IDE.

SqlitePassEngine.pas Implements a basic sql engine used to communicate with
sqlite library. Mainly used by TsqlitePassDatabase

SqlitePassErrorLang.pas

Ressource strings for language support.
Backup this file and translate the strings in your own
language .
Replace the SqlitePassErrorLang.pas with your own file.
Compile and overwrite any existing runtime package. (see
installation section).
Only English file is available so far.
A French one will be done shortly.
Translators are welcome !

SqlitePassKexiDef.pas Kexi specific constants definitions

SqlitePassParser.pas Implements a basic sql parser. Provides methods to split,
extract or replace a sql statement part.

SqlitePassUtils.pas
Implements a TobjectList object to provide code
compatibility between Delphi 4 and Lazarus.
The code is just a copy from FCL.

• /Sources/DesignTimeEditors : Dialogs boxes to
help you during design process in IDE.

• *.pas files are shared by Delphi and Lazarus projects
• *.dfm files are used by Delphi
• *.lfm and *.lrs files are used by Lazarus
• Packages/Lazarus

RegisterSqlitePassDbo.p
as

Registers and displays components and property editors in
IDE

SqlitePassChooseDataset
Dialog.pas

Used by TsqlitePassDataset.Dataset property. Displays an
treeview of available dataset in the current database.

SqlitePassIndexesDialog.
pas

Used by TsqlitepassDataset.Indexes property. Displays a
dialog to manage tables indexes.

SqlitePassISortByDialog.
pas

Used by TsqlitepassDataset.SortedBy property. Displays a
dialog to select fields to be sorted .

SqlitePassMasterDetailFi
eldsDialog.pas

Used by TsqlitepassDataset.MasterFields property. Displays
a dialog to link Master and Detail fields.

CreateNewIndex.pas Used by the indexes dialog when creating new table index.

RenameItem.pas Used by the indexes dialog when renaming a existing table
index.

Packages Installation

Download the last stable SQLite library from sqlite.org or use the file provided with the SqlitePass
package (..\SQLitePass_x.xx\SqliteLibrary). Decompress and install on your system.
This file (sqlite3.dll or sqlite3.so) should be placed in a system directory, ..\Windows\system32 for
example.
From version 0.28, SqlitePass uses a special Sqlite library version (sqlitepass3.dll) as the default
sqlite library (this library exports the following functions to get schema information from an sql
statement :

• sqlite3_column_database_name
• sqlite3_column_database_name16
• sqlite3_column_table_name
• sqlite3_column_table_name16
• sqlite3_column_origin_name
• sqlite3_column_origin_name16
• sqlite3_table_column_metadata

The compiled win32 version of this library is included in ..\SQLitePass\SqliteLibrary. For Linux or
other platforms users, a tutorial on how to compile the library is available on the SqlitePass website.

Delphi users (Delphi 4) :

• Uninstall any previous version of SqlitePassDbo components :
Choose [Components] [Install Packages] from IDE menu.
Select the SqlitePass package and click Remove.

• Compile Runtime package :
Choose [File] [Open] from the IDE menu and select
..\SQLitePass\Packages\Delphi4\D4_SqlitePassDbo_Runtime.dpk. Compile this package and
move the resulting file from
SQLitePass_v0.26\Packages\Delphi4\D4_SqlitePassDbo_Runtime.bpl to a directory inluded in
the Delphi search path (like ..\Delphi4\Bin or ..\Windows\system32 for example). Delete or
overwrite any previous D4_SqlitePassDbo_Runtime.bpl.

• Compile and install Designtime package :
Choose [File] [Open] from the IDE menu and select
..\SQLitePass\Packages\Delphi4\D4_SqlitePassDbo_Designtime.dpk. Compile this package,
then choose install.

• Check installation :
Select SqlitePassDbo on component palette pages and drop a SqlitePassDatabase and a
SqlitePassDataset on a new form. Check the components versions are correct in object
inspector.

http://www.sqlite.org/download.html

Lazarus users (>=0.9.20) :

• Uninstall any previous version of SqlitePassDbo components :
Choose [Components] [Configure Installed Packages] from IDE menu
Select the Laz_SqlitePassDbo_Runtime and Laz_SqlitePassDbo_Designtime packages and
click [Uninstall the selection] then [Save and quit the dialog].

• Compile Runtime package :
Choose [Components] [Open Package file] from IDE menu and select
..\SQLitePass\Packages\Lazarus\Laz_SqlitePassDbo_Runtime.lpk. Compile this package.

• Compile and install Designtime package :
Choose [File] [Open] from the IDE menu and select
..\SQLitePass\Packages\Lazarus\Laz_SqlitePassDbo_Designtime.lpk. In package dialog,
Choose compile then install. This will rebuild the IDE.

• Check installation :
Select SqlitePassDbo on Component palette pages and drop a SqlitePassDatabase and a
SqlitePassDataset on a new form. Check the components versions are correct in object
inspector.

Quick Start

A demo application is available in ..\SQLitePass_x.xx\Demo\Sources. This application was first developped
as a simple test program for the SqlitePass components. Du to many changes during developpement
process and to avoid problems when changing properties behavior in IDE, the SqlitePassDatabase and
SqlitePassDataset components are directly created by code at runtime.

This application tests also the designtime dialogs boxes used by the IDE Object Inspector. To do so, it links
directly to *.pas | *.dfm | *.lfm files stored in ..\SQLitePass_x.xx\Sources\DesignTimeEditors directory.

The source code is (or will be) self documented and should cover the basic usage of the components.

Another way is to describe a simple application using SqlitePass component.

It could look like this :

1. Place a SqlitePassDatabase component on a form,
2. Choose Database file the Database property (a database *.kexi file from

..\SQLitePass_x.xx\Demo\Databases for example),
3. Set Connected property to True,
4. Place a SqlitePassDataset component on the form
5. Set Database property to the name of SqlitePassDatabase component (by default this is

SqlitePassDatabase1),
6. Select a dataset from the DatasetName property dialog editor,
7. Set Active property to True.
8. Place a standart Delphi or Lazarus DataSource component on the page,
9. Set DataSet property to the name of the SqlitePassDataset component (by default this is

SqlitePassDataset1)
10. Place any DBAware component like DBGrid, DBNavigator...etc, on the form.
11. Set DBGrid's, DBNavigator...etc, DataSource property to the name of DataSource component (by

default this is DataSource1)
12. This is it !

The TSqlitePassDatabase component

The TsqlitePassDatabase component is the main link between your application and the sqlite library.
It currently supports sqlite engine version 3.xx

Property Connected: Boolean
Set this property to True to connect the database selected in the database property. Set it to False to
disconnect the database and all the datasets associated with it.

Property Database: String
Represents the physical database file you want to connect.

Property SqliteLibrary: String
Represents an alternative library file to be used instead of the default one.
By default, sqlitepassDatabase tries to use the sqlitepass3.dll or sqlitepass3.so file located in the system
path directory (..\windows\system32\ for example).
Enter a complete library file path to use a different library.
From version 0.28 TsqlitePassDatabase needs the sqlite library compiled with the ENABLE_METADATA
precompiler directive. This library (only win32 dll version) is available from http://source.online.free.fr or you
can compile your own following the tutorial available on the same internet site.

Property DatabaseType: String
Represents the database type detected from the database file extension you are using.
Once the database type is recognised, the TsqlitePassDatabase component will create an internal translator
to match the database specifications.
Actually, TsqlitePassDatabase works mainly with databases created with kexi.
Because each external program, used to create sqlite databases, uses his own specifications on datatype
format, data storage, queries storage ...etc, it is quite difficult to meet everyone needs.

This detection process should be changed in the following versions to enable more databases supports.
Feel free to indicate your favorite program or the one you would like to be supported.
Every contribution will be welcome.

Property Transaction: TSqlitePassTransaction
Sqlite engine supports only one active transaction at the same time. In other words, you can't use nested
transactions. The TSqlitePassTransaction object will automatically handle this, so any attempt to start a
transaction while one is running will have no effect.

Transactions are really helpfull to speed up and secure data operations. You should use them as often as
you can.
If no transaction is active, the TSqlitePassDatabase will always try to start a new transaction before writing to
the database and commit it. This could be time consuming if you need to update or add many records at the
same time and you should proceed like this :

Database.Transaction.Start;
...
Your code here to update or create records;
...
Database.Transaction.Commit;

Procedure Start
Starts a new transaction unless one is already started.

Procedure Commit
Ends the transaction and write data to the database.

Procedure Rollback
Ends the transaction and discards any change made to the database.

Property Options: TSqlitePassDatabaseOptions
Represents the database optional settings.

Property TableDefs: TSqlitePassTableDefs
The TableDefs property is a collection that gives you access to the tables definitons stored in the database.

Property QueryDefs: TSqlitePassQueryDefs
The QueryDefs property is a collection that gives you access to the queries definitons stored in the database.

Property IndexDefs: TSqlitePassIndexDefs
The IndexDefs property is a collection that gives you access to the indexes definitons stored in the database.

Property ViewDefs: TSqlitePassViewDefs
The ViewDefs property is a collection that gives you access to the views definitons stored in the database.

Property TriggerDefs: TSqlitePassTriggerDefs
The TriggerDefs property is a collection that gives you access to the Triggers definitons stored in the
database.

Property AttachedDatabases:
The AttachedDatabases is a collection that property gives you access to the currently attached databases.

Procedure AttachDatabase: String;

Enables to attach one or several foreign databases to the current one. The attached databases must be
compatible with the current one (the databases must have been created with the same database manager
application). Once a database is attached, its content becomes available as part of the current database.
Then you can access to tables, queries... as if they were part of the main database.
Usage : AttachDatabase(DatabasePath: String);

Procedure DetachDatabase
Detaches a previously attached database.

The TSqlitePassDataset component

The TSqlitePassDataset is a link between your application and the database content.
TSqlitePassDataset enables you to access tables, queries or even to create direct SQL queries to read and
write data from/to your database.

Property Active
Classic dataset behavior.
When set to True, opens the dataset and displays data if dataware components are linked to the datasource.
When set to False, closes the dataset and frees the memory used to store dataset records.

Property Datasource
Classic dataset behavior.

Property DatabaseAutoActivate
When set to True, opens automatically the database if needed.

Property Database
Selects the TsqlitePassDatabase component you want
to depend on.

Property DatasetName: String;
Once you are connected to a database, enters a table name or a query name. At design time, a dialog will
let you choose your dataset among all the available database datasets.

Property DatasetType
This property is only read. It gives you information about the currently selected dataset and can be one of the
following values :

dtUnkown : The dataset type could not be recognized or the DatasetName property is empty.

dtTable : The dataset is a table.
dtQuery : The dataset is a query.
dtView : The dataset is a view.
dtSqlDirect : The SQL property has been modified or you entered a new SQL query. When the SQL text
is changed, the DatasetName will automatically be set to '' assuming that the DatasetName and SQL text
don't match anymore.

Property SmartOpen: Boolean;
When set to True, the TsqlitePassDataset will automatically take care of opening the database connection if
the database is not connected. Set it to False to manually control the database connection.

Property SQL
Represents the SQL statement used to retrieve data from the database.
For tables, it will automatically be set to :
SELECT * FROM TableName; if all fields need to be retrieved from the table.

Or to
SELECT field1, field2... FROM TableName; if only some fields need to be retrieved from the table.

For queries, it will reflect the query SQL statement.

You can also directly write your own SQL statement to fit your needs or to interact directly with the database.
In this case, the datasetname propery will be set to '' (empty) and the datasetType will be set to dtDirectSql.

Property IndexDefs
The IndexDefs property gives you access to the indexes definitions for the selected table. Indexes are only
available if the DatasetType is a 'dtTable' type.

Property MasterSource: TDatasource
Classic table MasterSource behavior.

Property MasterFields: String
Classic table MasterFields behavior. At design time, a dialog will let you create or modify the relation
between MasterFields and DetailFields.
A relation is defined like this : MasterFieldName=DetailFieldName
If you want set several relations, they must be separated by a ';'
MasterFieldName1=DetailFieldName1;MasterFieldName2=DetailFieldName2

Property Filter: String;
Classic dataset filter behavior. The filter property takes a SQL WHERE clause but without the WHERE word
at the begining. You can also use wildcard characters as discribed in the Sqlite help.

Example : country = 'France'
customer like '%cur%'

Property Filtered: Boolean;
Determines whether or not the different filters are activated. The TsqlitePassDataset component can handle
three filter levels that will be applied in this priority order :

1 : MasterFields/DetailFields property
2 : Filter property
3 : RecordLowerLimit/RecordUpperLimit properties

Property FilterRecordLowerLimit: Integer;
This is a range filter. If greater than 1, the -nth first records will not be retrieved. In other words, if
FilterLowerLimit = 4, the fifth record will be the first one retrieved from the query.

Property FilterRecordUpperLimit: Integer;
This is a range filter.
If greater than 1, the -nth first records will be retrieved. In other words, if FilterUpperLimit = 4 and
FilterLowerLimit = 0 then only the four first records will be retrieved from the query.
If lesser than 0, the -nth last records will be retrieved. In other words, if FilterUpperLimit = -9 and
FilterLowerLimit = 0 then only the nine last records will be retrieved from the query.

Property SortedBy: String;
The SortedBy property takes a SQL ORDERBY clause but without the 'ORDER BY' expression at the
begining. At design time, a dialog will let you create or modify the sort order.
Example : 'car_names ASC, car_types DESC'.

Property Sorted: Boolean;

Determines whether or not the sortedBy property is activated.

Roadmap for version 0.31

The following methods should be available from the 0.31 release

● Find
● FindNext
● FindPrevious
● FindFirst
● FindLast
● Locate
● Lookup
● LookupFields

Find
The internal implementation could work as a subset of the original query by adding the searchFields and
values to the WHERE clause of the original query.
Then it could scroll the subset with FindFirst, FindPrevious...
If we need to locate the record in the original subset, we retrieve the subset record primary key and then
scan the original query result until we find the matching primary key.
The way we scan the original subset will depend on the sort order.
If the primary key is ordered we could use a dichotomic search to speed up operation..., otherwise a classic
loop could be used.

TODO
Enable to bind variables values in a filter expression.

	Packages Description
	Packages Installation
	Quick Start
	The TSqlitePassDatabase component
	The TSqlitePassDataset component
	Roadmap for version 0.31

